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Whether assemblages of insect species locally coexist or are

only being slowly lost from communities remains an enduring

question. Addressing this question is especially critical in the

wake of global change, which is expected to reshuffle

biological communities and create novel interspecific

interactions. In reviewing studies of putative insect species

coexistence, we find that few have demonstrated necessary

criteria to conclude that species coexist. We also find that few

integrate ecological and evolutionary perspectives towards

understanding coexistence. Yet, both micro-evolutionary and

macroevolutionary processes can play a critical role in shaping

species coexistence mechanisms, especially in response to

global change. We suggest that understanding how global

change may affect the makeup of communities can be best

achieved by developing a research program focused on the

joint contribution of ecological and evolutionary processes.
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Introduction
Huxley’s quip on an ‘inordinate fondness’ for beetles and

Hutchinson’s observations of water boatmen (Corixidae)

[1] set the stage for a now vast series of inquiries focused

on uncovering astounding levels of species diversity.

Hundreds if not thousands of Coleoptera [2] and Hyme-

noptera species [3], and equally impressive numbers of

butterfly species [4], can all be found together in small

areas (i.e., a single plant). Examples such as these abound

in the literature. This leads to a fundamental question at

the interface of ecology and evolutionary biology — how

(or do) all of these species coexist?
www.sciencedirect.com 
Addressing this question is important because global cli-

mate change is causing the disassembly of existing commu-

nities and assembly of novel communities as species dis-

tributions shift [5–9,10�]. Similarly, anthropogenic changes

such as urbanization are altering community composition,

particularly among insects [11]. Such shifts in community

composition can result in both novel direct and indirect

species interactions[10�,12–14].Thesealtered interactions,

along with the direct effects of climate change, will affect

not only the ecological factors underlying the abilities of

species to coexist [10�,15,16], but will also influence evolu-

tionary processes [17,18]. Indeed, although some species

may migrate and undergo range shifts to avoid climate-

induced extinction [9], an alternative is adaptive evolution

in response to selection imposed by climate change [17,18].

Such adaptive evolution, or lack thereof, to the local biotic

and abiotic environment may therefore play a role in

shaping community structure [19,20,21��,22��].

Thus, to understand if communities will be resilient to

global change and successfully re-assemble in new loca-

tions there is an important need to determine (1) whether

species are truly coexisting or not, and (2) to incorporate the

role of evolutionary processes. Yet, there is presently a

limited understanding of how ecological and evolutionary

processes combine to shape coexistence in insect assem-

blages. Many studies have focused on identifying ecologi-

cal processes, such as the role of competition or predation,

in promoting niche differences that structure communities

[23]. Similarly, numerous evolutionary studies have

focused on understanding how microevolutionary pro-

cesses shape individual taxa and the macroevolutionary

relationships among them. However, few studies combine

these efforts in a framework aimed at incorporating feed-

backs between ecological and evolutionary processes in a

community context (Figure 1) [24��,25�,26��,27].

In this review, we discuss how a research program focused

on combining ecological and evolutionary perspectives

can advance our understanding of species coexistence.

Our goal is to demonstrate that incorporating this eco-

evolutionary perspective will be insightful for under-

standing how biological communities may respond to

global change. To achieve this goal, we first present an

overview of modern coexistence theory, outlining the

requirements for species coexistence. Although coexis-

tence mechanisms can operate over various spatial scales

[28] we focus on local coexistence, in which species

interact with each other and the local environment. We

then evaluate studies where this framework has been
Current Opinion in Insect Science 2018, 29:71–77
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Figure 1
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Mechanisms of species coexistence across ecological and evolutionary scales. (a) The immediate, ecological time scale of stabilizing effects and

fitness differences. Different colored lines represent two species. The solid lines depict stabilizing effects, with the small arrow showing the

demographic advantage gained when rare, and the slope indicating the strength of stabilization. Dashed lines show species per capita population

growth rates in the absence of stabilizing effects (i.e., fitness differences). Modified from Ref. [17]. (b) A depiction of the geographic distributions

of two species, and expectations of how microevolutionary processes may affect the strength of fitness differences and stabilizing effects when

species’ populations have not coevolved with each other (allopatric scenarios; showing no stabilizing effects and strong fitness differences with

greater fitness for the locally adapted species) to reduce competition, and when they have (the sympatric scenario; showing how local coevolution

can generate stabilizing effects promoting local coexistence even if fitness differences remain). (c) Different macroevolutionary speciation

dynamics involving ecological and non-ecological speciation generating species pairs with different combinations of stabilizing effects and fitness

differences. The scenario depicted in the top panel would result in coexistence, the middle panel competitive exclusion of the purple taxa, and the

bottom panel would eventually result in one species coming to dominate by random chance.
applied in insects. Finally, we discuss how micro-evolu-

tionary and macro-evolutionary processes may shape the

potential for species coexistence [19,21��,26��,29], and

how this may be impacted under global change.

Species coexistence and co-occurrence are
not the same
Defining coexistence

Simply because two or more species can be found in a

location co-occurring with one another does not mean

they coexist [30]. Co-occurrence simply indicates that any

two species are found living together [30]. Coexistence, or

more specifically stable coexistence, requires that every

species meets the invasibility criterion [31,32]: each spe-

cies can increase when rare (‘invade’) and the other

species (the ‘residents’) are at their single species equi-

librium (or long-term abundances) when the invader is

absent. Few studies have directly tested for invasibility

[30], which is necessary to understand if species can

indeed re-assemble in communities that have been per-

turbed in response to global change. As explained by

Chesson [31], the potential for competitor coexistence is a

consequence of two components: (i) stabilizing niche
Current Opinion in Insect Science 2018, 29:71–77 
effects that reduce interspecific competition and intensify

intraspecific competition, and (ii) competitive fitness

differences, which predict which species would go locally

extinct without stabilizing effects (Figure 1). The balance

between stabilizing effects and fitness differences deter-

mines whether or not species coexist [31].

The difference between co-occurrence and coexistence is

nota matter of semantics. Theissue is that an assemblage of

species in a community may be composed of any combina-

tion of species that are coexisting (satisfy the invasibility

criterion), neutral (ecologically equivalent; sensu [33]),

walking dead (undergoing slow extinction via interactions

with the environment), and sink (maintained locally

because of immigration) [26��]. Across the landscape the

same sets of species may vary in their assignment to each of

these species types. Therefore, it is impossible to simply

conclude that a group of taxa found co-occurring in a

location are coexisting without rigorous empirical testing.

The distinction between co-occurrence and coexistence

also matters for developing a framework on how biological

communities may respond to global change. If species are
www.sciencedirect.com
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simply co-occurring, for example, are neutral species,

then for that set of taxa they are essentially replaceable

in an ecological community. That is, the diversity per se
does not matter. But if they are coexisting, the unique

ecological properties of those species may critically

underlie their abilities to coexist in those communities.

Evidence for coexistence in insects

To evaluate our understanding of insect species coexis-

tence in local communities using Chesson’s (2000) coex-

istence framework, we examined recent studies that

focused on coexistence in insect assemblages. We com-

pleted a non-exhaustive literature review of studies

among insect groups citing key references that have

recently spurred the hunt for species coexistence

[30,31,33,34].

The results from this exercise were striking: although

studies of stabilizing niche differences that could promote

coexistence in insect assemblages abound [35], only a

single study provided evidence of local species coexis-

tence by demonstrating invasibility [22��]. Using an

experimental lab approach, [22��] found that two species

of Callosbruchus bean beetles exhibited mutual invasibil-

ity. Although demonstrating invasibility is the benchmark

for coexistence, other approaches are also useful. For

instance, [36] estimated competitive zero-growth iso-

clines with three different genera of grass-eating grass-

hoppers. Results from this experiment demonstrated

intersecting zero-growth isoclines, implying mutual inva-

sibility and indicating that coexistence is achievable

under field conditions [36].

Studies of coexistence typically reach the conclusion that

an assemblage consists of either niche or neutral species.

Yet, there is no reason that any assemblage cannot contain

both [26��,37]. Studies of damselfly (Odonata, Zygoptera)

diversity demonstrate the need for plurality [35,38,39].

Experimental and observational studies have shown that

although stabilizing effects are not operating among

Enallagma damselfly species assemblages [38], they are

operating among three genera of damselflies that co-occur

(Enallagma, Ischnura, and Lestes). Thus, multiple types of

‘species’ can occur in a single system [35,38,39].

Why evolution matters for species
coexistence
The study of species coexistence, like many ecological

problems, has often ignored or only subtly considered the

contribution of evolutionary processes [29]. However,

evolution undoubtedly plays an important role

[19,21��,24��,26��,29], and may affect the ability for spe-

cies to coexist in biological communities as species

respond to global change. Indeed, evolutionary processes

have increasingly been used as part of an emerging

framework for developing ideas in community ecology,

and coexistence in particular [26��,29,40–43]. Here we
www.sciencedirect.com 
consider microevolution as a focus on shorter-term evo-

lutionary dynamics occurring within populations (e.g.,

mainly adaptive evolution), and macroevolution as a focus

on speciation and extinction dynamics [44]. The contri-

bution of evolutionary processes to Chesson’s framework

can be applied over varied time scales, as both ongoing

micro-evolutionary processes and historical macro-evolu-

tionary processes can shape stabilizing effects and fitness

differences (Figure 1).

Microevolutionary contributions towards coexistence

One way that microevolution, particularly local adapta-

tion, might affect coexistence is through character dis-

placement — competitor coevolution to reduce resource

competition [21��,29,45–48]. By reducing resource use

overlap, character displacement should cause species to

experience stronger intraspecific competition relative to

interspecific competition, and thereby strengthen stabi-

lizing effects [21��,29,49]. Alternatively, if species evolve

towards niche convergence and competitive similarity

rather than character displacement, local adaptation

may simultaneously affect fitness differences and stabi-

lizing effects [26��,50,51] (Figure 1b). Or there may be no

effect of coevolution on coexistence. In the above noted

study by [22��] of bean beetles, there were no differences

in invasibility between allopatric (e.g., where coevolution

could not occur) and sympatric (e.g., where coevolution

could occur) evolving populations. Thus, the common

perception that competitor coevolution will necessarily

promote species coexistence may not necessarily be so

[43]. Such studies merging character displacement theory

and coexistence theory are exceedingly rare, but are a

promising approach for understanding how microevolu-

tionary dynamics may affect local species coexistence

[20,21��].

Short-term mutual invasibility experiments may also not

predict the long-term outcome of competition when

competitive interactions can evolve [50,52]. For instance,

evolution can cause species to become more intense

competitors [52]. In a lab experiment, houseflies (Musca
domestica) were initially competitively superior to blow-

flies (Phaenicia sericata). However, in only a few genera-

tions, blowflies evolved to become competitively superior

and exclude houseflies, demonstrating that fitness differ-

ences can rapidly evolve. Thus, although studies are

limited, there is no consensus on what rapid evolution

does to the ability for species to coexist.

Studies of frequency-dependent selection in polymorphic

traits are also illustrative of how ongoing evolutionary

processes might shape coexistence. For example, stick

insects (Timema cristinae) can be striped or unstriped,

allowing these insects to be camouflaged from predators

on different hosts plants. Using an 18-year data set [53]

found that the frequency of striped morphs would

increase and then decrease through time — a pattern
Current Opinion in Insect Science 2018, 29:71–77
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consistent with negative frequency dependent selection.

These different morphs are in the early stage of ecological

speciation; they are ‘incipient species’ [54]. Thus, the

ecological and evolutionary dynamics leading to diver-

gent selection on these different morphs and maintaining

them in local populations are essentially the early stages

of species-level stabilizing effects evolving.

Macroevolutionary contributions towards coexistence

Climate has a long been thought to be an important factor

contributing to the macroevolutionary dynamics that

shape species communities [55]. At the macroevolution-

ary level, speciation and extinction dynamics can influ-

ence coexistence mechanisms [42], in part, by defining

the regional and local species pools [56,57]. At this scale,

of particular interest is to determine how introducing a

new species via speciation, or removal through extinction,

causes stabilizing effects and fitness differences to change

among the constituent species in the community.

Speciation is in some ways a grand experiment in inva-

sibility. Once a new species has evolved, can it success-

fully invade a local community where the other species

remain intact? Both stabilizing and equalizing processes

might affect this. However, we posit that ecological

speciation is more likely to lead, at least initially, to

coexistence than non-ecological speciation.

With ecological speciation, where reproductive isolation

evolves as a by-product of adaptation to different niches

[46,58,59], such speciation may immediately produce

strong stabilizing effects (e.g., incipient speciation in stick

insects [53]) (Figure 1c). Alternatively, if niche differen-

tiation is subtle, stabilizing effects might be weak, and if

fitness differences are substantial the result is competitive

exclusion (Figure 1c). Stabilizing effects could potentially

be further strengthened by local coevolution with com-

petitors [20,21��]. However, this need not be the case. For

instance, character displacement appears to have little

role for explaining potential coexistence of Anelosimus
spiders [60]. Instead, ecological differences among these

species appear to have evolved in allopatry during speci-

ation, followed by community assembly with no ensuing

changes in traits mediating competitive interactions.

By contrast, non-ecological modes of speciation such as

those produced through genomic incompatibilities,

hybridization and polyploidization, sexual selection,

and mate recognition [26��,61,62,63�,64] may produce

species with little to no niche differentiation, and there-

fore no to weak stabilizing effects [26��,38] (Figure 1c).

Such species may co-occur, but these speciation modes do

not generate coexistence as a by-product. Diverse insect

groups such as Enallagma damselflies, Chrysoperla lacew-

ings, Hawaiian crickets, and Drosophila are thought to

have speciated via reproductive character displacement

[26��]. These species appear to differ largely in mating
Current Opinion in Insect Science 2018, 29:71–77 
system features, not ecologically, and are candidates for

neutral species.

Thus, differences in speciation modes might offer a

framework for predicting the ability of species to coexist

(Figure 1c). Ecological speciation may produce species

that are immediately coexisting, whereas non-ecological

speciation may produce non-niche differentiated taxa

that only co-occur [26��]. This is a tantalizing possibility,

because rather than generating predictions of how stabi-

lizing and fitness equalizing effects might vary based on

how closely or distantly related taxa are [65–67], the

macroevolutionary dynamics of speciation may be more

informative. Of course, simply because speciation

occurred ecologically or non-ecologically does not mean

that populations of the resulting species cannot undergo

niche divergence that might promote local coexistence, or

by contrast convergence reducing niche and fitness dif-

ferences (e.g., Figure 1b). Indeed, the ecology of species

differences that promote niche differentiation are not

necessarily the same as those driving speciation [62].

By contrast to speciation, how the macroevolutionary

dynamics of extinction affect coexistence is less well

understood and rarely considered [42]. Yet, the ramifica-

tions of extinction are multifarious and not always obvi-

ous. On the one hand, global or local extinction of one

member of a pair of competing species has an overt

equalizing effect, immediately removing any fitness dif-

ferences. In the simplest case of pair-wise competition,

this also means that the remaining species need not

occupy a unique competitive niche to persist. However,

this ‘simplest case’, and much of our thinking on compet-

itor coexistence, is framed as a problem of pairwise

competition [68,69��], which is often an unrealistic cari-

cature of communities.

Most communities have multiple species, and this diversity

affords the opportunity for coexistence mechanisms where

the effects of extinction may be key. In some cases, coexis-

tence between two competitors is dependent on indirect

interactions  with other competitors, which can affect stabi-

lizing mechanisms and fitness differences [69��]. Under

intransitive competition, for example, the indirect competi-

tive effects that one species exerts on another are what allow

another competitor to coexist. Thus, extinction of one

species can cause an extinction cascade [69��,70]. However,

only recently has an invasibility criteria been developed for

intransitive competition [68] and quantifying intransitivity is

challenging [71]. For this reason, examples of these dynam-

ics in insectsarecurrentlynotknown,asidefromatheoretical

model of cactus tending ants [72]. Overall, much work

remains on the contribution of extinction as a process medi-

ating species coexistence. But, understanding how extinc-

tions may affect the ability of species coexist will become an

increasingly pressing issue as climate change is expected to

accelerate the rate of extinction [14].
www.sciencedirect.com
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Conclusion
Global change is expected to continue altering the

makeup of ecological communities. How communities

will respond to such changes depends, in part, on whether

or not species are currently coexisting. Although insects

have long been studied for their diversity, it remains

unclear though whether this rich diversity exists because

species ecological interactions result in them locally coex-

isting or simply co-occurring with one another. Evaluating

coexistence criteria should be a goal, as this will help

determine the prospects for communities to successfully

reassemble (i.e., invasibility dynamics) and resume func-

tioning as species move or adapt to altered environmental

conditions. Indeed, global change will affect not only the

ecological processes structuring communities, but also the

evolutionary processes shaping the abilities for species to

persist in novel climate conditions and novel biological

communities. Consequently, studies integrating ecology

and evolutionary perspectives will ultimately be neces-

sary to better understand how and why insect communi-

ties will respond to global change.
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